Maximizing Non-monotone/Non-submodular Functions by Multi-objective Evolutionary Algorithms

نویسندگان

  • Chao Qian
  • Yang Yu
  • Ke Tang
  • Xin Yao
  • Zhi-Hua Zhou
چکیده

Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. However, due to the highly randomized and complex behavior, the theoretical analysis of EAs is difficult and is an ongoing challenge, which has attracted a lot of research attentions. During the last two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study the performance of EAs on a general class of combinatorial optimization problems. To the best of our knowledge, this direction has been rarely touched and the only known result is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular set functions with matroid constraints, which includes many NP-hard combinatorial optimization problems. The aim of this work is to contribute to this line of research. As many combinatorial optimization problems also involve non-monotone or non-submodular objective functions, we consider these two general problem classes, maximizing non-monotone submodular functions without constraints and maximizing monotone non-submodular functions with a size constraint. We prove that a simple multiobjective EA called GSEMO can generally achieve good approximation guarantees in polynomial expected running time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms

Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a multi-objective evolutionary algorithm called GSEMO until it has obtained a good approximation for submodular functions. For the case of monoto...

متن کامل

Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms

We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...

متن کامل

Constrained Monotone k-Submodular Function Maximization Using Multi-objective Evolutionary Algorithms with Theoretical Guarantee

The problem of maximizing monotone ksubmodular functions under a size constraint arises in many applications, and it is NP-hard. In this paper, we propose a new approach which employs a multi-objective evolutionary algorithm to maximize the given objective and minimize the size simultaneously. For general cases, we prove that the proposed method can obtain the asymptotically tight approximation...

متن کامل

Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms

Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtai...

متن کامل

Parallel Double Greedy Submodular Maximization

Many machine learning problems can be reduced to the maximization of submodular functions. Although well understood in the serial setting, the parallel maximization of submodular functions remains an open area of research with recent results [1] only addressing monotone functions. The optimal algorithm for maximizing the more general class of non-monotone submodular functions was introduced by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07214  شماره 

صفحات  -

تاریخ انتشار 2017